Prev Next

The two or three days which we passed in getting things ready to start were rather dull. The morning after our arrival I saw, during a morning walk, on a hill just outside the town, a large new building, on which the word "Athenaeum" was conspicuously shown.

The Boston Athenaeum had a very fine library; is it not possible that this may have a beginning of something of the same sort?

Animated by this hope, I went up the hill and entered the building, which seemed to be entirely vacant. The first words that met my eyes were "Bar Room" painted over a door. It was simply a theatre, and I left it much disappointed.

Here we were joined by a young Methodist clergyman,--Edward Eggleston,--and the four of us, with our instruments and appliances, set out on our journey of five days over the plains. On the first day we followed partly the line of a projected railway, of which the embankments had been completed, but on which work had, for some reason, been stopped to await a more prosperous season.

Here was our first experience of towns on paper. From the tone in which the drivers talked of the places where we were to stop over night one might have supposed that villages, if not cities, were plentiful along our track. One example of a town at that time will be enough. The principal place on our route, judging from the talk, was Breckenridge. We would reach it at the end of the fourth day, where we anticipated a pleasant change after camping out in our tent for three nights. It was after dark before we arrived, and we looked eagerly for signs of the town we were approaching.

The team at length stopped in front of an object which, on careful examination in the darkness, appeared to be the most primitive structure imaginable. It had no foundations, and if it had a wall at all, it was not more than two or three feet in height.

Imagine the roof taken off a house forty feet long and twenty feet wide and laid down on the ground, and you have the hotel and only building, unless perhaps a stable, in Breckenridge at that time.

The entrance was at one end. Going in, a chimney was seen in the middle of the building. The floor was little more than the bare ground. On each side of the door, by the flickering light of a fire, we saw what looked like two immense boxes. A second glance showed that these boxes seemed to be filled with human heads and legs.

They were, in fact, the beds of the inhabitants of Breckenridge.

Beds for the arriving travelers, if they existed at all, which I do not distinctly remember, were in the back of the house. I think the other members of the party occupied that portion. I simply spread my blanket out on the hearth in front of the fire, wrapped up, and slept as soundly as if the bed was the softest of a regal palace.

At Fort Garry we were received by Governor McTavish, with whom Captain Davis had had some correspondence on the subject of our expedition, and who gave us letters to the "factors" of the Hudson Bay Company scattered along our route. We found that the rest of our journey would have to be made in a birch bark canoe. One of the finest craft of this class was loaned us by the governor. It had been, at some former time, the special yacht of himself or some visiting notable.

It was manned by eight half-breeds, men whose physical endurance I have never seen equaled.

It took three or four days to get everything ready, and this interval was, of course, utilized by Scudder in making his collections.

He let the fishermen of the region know that he wanted specimens of every kind of fish that could be found in the lake. A very small reward stirred them into activity, and, in due time, the fish were brought to the naturalist,--but lo! all nicely dressed and fit for cooking. They were much surprised when told that all their pains in dressing their catch had spoiled it for the purposes of the visiting naturalist, who wanted everything just as it was taken from the water.

Slow indeed was progress through the lake. A canoe can be paddled only in almost smooth water, and we were frequently stormbound on some desolate island or point of land for two or three days at a time.

When, after many adventures, some of which looked like hairbreadth escapes, we reached the Saskatchewan River, the eclipse was only three or four days ahead, and it became doubtful whether we should reach our station in time for the observation. It was to come off on the morning of July 18, and, by dint of paddling for twenty-four hours at a stretch, our men brought us to the place on the evening before.

Now a new difficulty occurred. In the wet season the Saskatchewan inundates the low flat region through which it flows, much like the Nile. The country was practically under water. We found the most elevated spot we could, took out our instruments, mounted them on boxes or anything else in the shallow puddles of water, and slept in the canoe. Next morning the weather was hopelessly cloudy.

We saw the darkness of the eclipse and nothing more.

Astronomers are greatly disappointed when, having traveled halfway around the world to see an eclipse, clouds prevent a sight of it; and yet a sense of relief accompanies the disappointment. You are not responsible for the mishap; perhaps something would have broken down when you were making your observations, so that they would have failed in the best of weather; but now you are relieved from all responsibility. It was much easier to go back and tell of the clouds than it would have been to say that the telescope got disarranged at the critical moment so that the observations failed.

On our return across Minnesota we had an experience which I have always remembered as illustrative of the fallacy of all human testimony about ghosts, rappings, and other phenomena of that character. We spent two nights and a day at Fort Snelling. Some of the officers were greatly surprised by a celestial phenomenon of a very extraordinary character which had been observed for several nights past. A star had been seen, night after night, rising in the east as usual, and starting on its course toward the south.

But instead of continuing that course across the meridian, as stars invariably had done from the remotest antiquity, it took a turn toward the north, sunk toward the horizon, and finally set near the north point of the horizon. Of course an explanation was wanted.

My assurance that there must be some mistake in the observation could not be accepted, because this erratic course of the heavenly body had been seen by all of them so plainly that no doubt could exist on the subject. The men who saw it were not of the ordinary untrained kind, but graduates of West Point, who, if any one, ought to be free from optical deceptions. I was confidently invited to look out that night and see for myself. We all watched with the greatest interest.

In due time the planet Mars was seen in the east making its way toward the south. "There it is!" was the exclamation.

"Yes, there it is," said I. "Now that planet is going to keep right on its course toward the south."

"No, it is not," said they; "you will see it turn around and go down towards the north."

Hour after hour passed, and as the planet went on its regular course, the other watchers began to get a little nervous. It showed no signs of deviating from its course. We went out from time to time to look at the sky.

"There it is," said one of the observers at length, pointing to Capella, which was now just rising a little to the east of north; "there is the star setting."

"No, it is n't," said I; "there is the star we have been looking at, now quite inconspicuous near the meridian, and that star which you think is setting is really rising and will soon be higher up."

A very little additional watching showed that no deviation of the general laws of Nature had occurred, but that the observers of previous nights had jumped at the conclusion that two objects, widely apart in the heavens, were the same.

I passed more than four years in such life, surroundings, and activities as I have described. In 1858 I received the degree of D. S. from the Lawrence Scientific School, and thereafter remained on the rolls of the university as a resident graduate. Life in the new atmosphere was in such pleasant and striking contrast to that of my former world that I intensely enjoyed it. I had no very well marked object in view beyond continuing studies and researches in mathematical astronomy. Not long after my arrival in Cambridge some one, in speaking of Professor Peirce, remarked to me that he had a European reputation as a mathematician. It seemed to me that this was one of the most exalted positions that a man could attain, and I intensely longed for it. Yet there was no hurry. Reputation would come to him who deserved it by his works; works of the first class were the result of careful thought and study, and not of hurry.

A suggestion had been made to me looking toward a professorship in some Western college, but after due consideration, I declined to consider the matter. Yet the necessity of being on the alert for some opening must have seemed quite strong, because in 1860 I became a serious candidate for the professorship of physics in the newly founded Washington University at St. Louis. I was invited to visit the university, and did so on my way to observe the eclipse of 1860.

My competitor was Lieutenant J. M. Schofield of the United States Army, then an instructor at West Point. It will not surprise the reader to know that the man who was afterward to command the army of the United States received the preference, so I patiently waited more than another year.

[1] Henry Holt & Co.: New York, 1877.

[2] _Wayside Sketches_, by E. J. Loomis. Roberts: Boston

[3] Evangelinus Apostolides Sophocles, a native Greek and a learned professor of the literature of his country.

IV

LIFE AND WORK AT AN OBSERVATORY

In August, 1861, while I was passing my vacation on Cape Ann, I received a letter from Dr. Gould, then in Washington, informing me that a vacancy was to be filled in the corps of professors of mathematics attached to the Naval Observatory, and suggesting that I might like the place. I was at first indisposed to consider the proposition. Cambridge was to me the focus of the science and learning of our country. I feared that, so far as the world of learning was concerned, I should be burying myself by moving to Washington. The drudgery of night work at the observatory would also interfere with carrying on any regular investigation. But, on second thought, having nothing in view at the time, and the position being one from which I could escape should it prove uncongenial, I decided to try, and indited the following letter:--

Nautical Almanac Office, Cambridge, Mass., August 22, 1861.

Sir,--I have the honor to apply to you for my appointment to the office of Professor of Mathematics in the United States Navy. I would respectfully refer you to Commander Charles Henry Davis, U. S. N., Professor Benjamin Peirce, of Harvard University, Dr. Benjamin A. Gould, of Cambridge, and Professor Joseph Henry, Secretary of the Smithsonian Institution, for any information respecting me which will enable you to judge of the propriety of my appointment.

With high respect, Your obedient servant, Simon Newcomb, Assistant, Nautical Almanac.

Hon. Gideon Welles, Secretary of the Navy, Washington, D. C.

I also wrote to Captain Davis, who was then on duty in the Navy Department, telling him what I had done, but made no further effort.

Great was my surprise when, a month later, I found in the post-office, without the slightest premonition, a very large official envelope, containing my commission duly signed by Abraham Lincoln, President of the United States. The confidence in the valor, abilities, etc., of the appointee, expressed in the commission, was very assuring.

Accompanying it was a letter from the Secretary of the Navy directing me to report to the Bureau of Ordnance and Hydrography, in Washington, for such duty as it might assign me. I arrived on October 6, and immediately called on Professor J. S. Hubbard, who was the leading astronomer of the observatory. On the day following I reported as directed, and was sent to Captain Gilliss, the recently appointed Superintendent of the Naval Observatory, before whom I stood with much trepidation. In reply to his questions I had to confess my entire inexperience in observatory work or the making of astronomical observations. A coast survey observer had once let me look through his transit instrument and try to observe the passage of a star. On the eclipse expedition mentioned in the last chapter I had used a sextant. This was about all the experience in practical astronomy which I could claim. In fact I had never been inside of an observatory, except on two or three occasions at Cambridge as a visitor. The captain reassured me by saying that no great experience was expected of a newcomer, and told me that I should go to work on the transit instrument under Professor Yarnall, to whose care I was then confided.

As the existence of a corps of professors of mathematics is peculiar to our navy, as well as an apparent, perhaps a real, anomaly, some account of it may be of interest. Early in the century--one hardly knows when the practice began--the Secretary of the Navy, in virtue of his general powers, used to appoint men as professors of mathematics in the navy, to go to sea and teach the midshipmen the art of navigation. In 1844, when work at the observatory was about to begin, no provision for astronomers was made by Congress.

The most convenient way of supplying this want was to have the Secretary appoint professors of mathematics, and send them to the observatory on duty.

A few years later the Naval Academy was founded at Annapolis, and a similar course was pursued to provide it with a corps of instructors.

Up to this time the professors had no form of appointment except a warrant from the Secretary of the Navy. Early in the history of the academy the midshipmen burned a professor in effigy. They were brought before a court-martial on the charge of disrespect to a superior officer, but pleaded that the professor, not holding a commission, was not their superior officer, and on this plea were acquitted. Congress thereupon took the matter up, provided that the number of professors should not exceed twelve, and that they should be commissioned by the President by and with the advice and consent of the Senate. This raised their rank to that of a commissioned corps in the navy. They were to perform such duty as the Secretary of the Navy might direct, and were, for the most part, divided between the Naval Academy and the Observatory.

During the civil war some complaint was made that the midshipmen coming from the academy were not well trained in the duties of a seagoing officer; and it was supposed that this was due to too much of their time being given to scientific studies. This was attributed to the professors, with the result that nearly all those attached to the academy were detached during the four years following the close of the civil war and ordered elsewhere, mostly to the observatory.

Their places were taken by line officers who, in the intervals between their turns of sea duty, were made heads of departments and teachers of the midshipmen in nearly every branch.

This state of things led to the enactment of a law (in 1869, I think), "that hereafter no vacancy in the grade of professors of mathematics in the navy shall be filled."

In 1873 this provision was annulled by a law, again providing for a corps of twelve professors, three of whom should have the relative rank of captain, four of commander, and the remainder of lieutenant-commander or lieutenant.

Up to 1878 the Secretary of the Navy was placed under no restrictions as to his choice of a professor. He could appoint any citizen whom he supposed to possess the necessary qualifications. Then it was enacted that, before appointment, a candidate should pass a medical and a professional examination.

I have said that the main cause of hesitation in making my application arose from my aversion to very late night work. It soon became evident that there was less ground than I had supposed for apprehension on this point. There was a free and easy way of carrying on work which was surprising to one who had supposed it all arranged on strict plans, and done according to rule and discipline. Professor Yarnall, whose assistant I was, was an extremely pleasant gentleman to be associated with. Although one of the most industrious workers at the observatory, there was nothing of the martinet about him.

He showed me how to handle the instrument and record my observations.

There was a Nautical Almanac and a Catalogue of Stars. Out of these each of us could select what he thought best to observe.

The custom was that one of us should come on every clear evening, make observations as long as he chose, and then go home. The transit instrument was at one end of the building and the mural circle, in charge of Professor Hubbard, at the other. He was weak in health, and unable to do much continuous work of any kind, especially the hard work of observing. He and I arranged to observe on the same nights; but I soon found that there was no concerted plan between the two sets of observers. The instruments were old-fashioned ones, of which mine could determine only the right ascension of a star and his only its declination; hence to completely determine the position of a celestial body, observations must be made on the same object with both instruments. But I soon found that there was no concert of action of this kind. Hubbard, on the mural circle, had his plan of work; Yarnall and myself, on the transit, had ours.

When either Hubbard or myself got tired, we could "vote it cloudy"

and go out for a plate of oysters at a neighboring restaurant.

Report error

If you found broken links, wrong episode or any other problems in a anime/cartoon, please tell us. We will try to solve them the first time.

Email:

SubmitCancel

Share