Prev Next

In Fig. 6, the pelvis and hind limbs of a crocodile, a three-toed bird, and an ornithoscelidan are represented side by side; and, for facility of comparison, in corresponding positions; but it must be recollected that, while the position of the bird's limb is natural, that of the crocodile is not so. In the bird, the thigh-bone lies close to the body, and the metatarsal bones of the foot (ii., iii., iv., Fig. 6) are, ordinarily, raised into a more or less vertical position; in the crocodile, the thigh-bone stands out at an angle from the body, and the metatarsal bones (i., ii., iii., iv., Fig. 6) lie flat on the ground.

Hence, in the crocodile, the body usually lies squat between the legs, while, in the bird, it is raised upon the hind legs, as upon pillars.

In the crocodile, the pelvis is obviously composed of three bones on each side: the ilium (Il.), the pubis (Pb.), and the ischium (Is.). In the adult bird there appears to be but one bone on each side. The examination of the pelvis of a chick, however, shows that each half is made up of three bones, which answer to those which remain distinct throughout life, in the crocodile. There is, therefore, a fundamental identity of plan in the construction of the pelvis of both bird and reptile; though the differences in form, relative size, and direction of the corresponding bones in the two cases are very great.

But the most striking contrast between the two lies in the bones of the leg and of that part of the foot termed the tarsus, which follows upon the leg. In the crocodile, the fibula (F) is relatively large and its lower end is complete. The tibia (T) has no marked crest at its upper end, and its lower end is narrow and not pulley-shaped. There are two rows of separate tarsal bones (As., Ca., &c.) and four distinct metatarsal bones, with a rudiment of a fifth.

In the bird, the fibula is small and its lower end diminishes to a point. The tibia has a strong crest at its upper end and its lower extremity passes into a broad pulley. There seem at first to be no tarsal bones; and only one bone, divided at the end into three heads for the three toes which are attached to it, appears in the place of the metatarsus.

In a young bird, however, the pulley-shaped apparent end of the tibia is a distinct bone, which represents the bones marked As., Ca., in the crocodile; while the apparently single metatarsal bone consists of three bones, which early unite with one another and with an additional bone, which represents the lower row of bones in the tarsus of the crocodile.

In other words, it can be shown by the study of development that the bird's pelvis and hind limb are simply extreme modifications of the same fundamental plan as that upon which these parts are modelled in reptiles.

[Illustration: FIG. 6.--BIRD. ORNITHOSCELIDAN. CROCODILE.

(The letters have the same signification in all the figures. Il., Ilium; a, anterior end; b, posterior end; Is., ischium; Pb., pubis; T, tibia; F, fibula; As., astragalus; Ca., calcaneum; 1, distal portion of the tarsus; i., ii., iii., iv.; metatarsal bones.)]

On comparing the pelvis and hind limb of the ornithoscelidan with that of the crocodile, on the one side, and that of the bird, on the other (Fig. 6), it is obvious that it represents a middle term between the two. The pelvic bones approach the form of those of the birds, and the direction of the pubis and ischium is nearly that which is characteristic of birds; the thigh bone, from the direction of its head, must have lain close to the body; the tibia has a great crest; and, immovably fitted on to its lower end, there is a pulley-shaped bone, like that of the bird, but remaining distinct. The lower end of the fibula is much more slender, proportionally, than in the crocodile. The metatarsal bones have such a form that they fit together immovably, though they do not enter into bony union; the third toe is, as in the bird, longest and strongest. In fact, the ornithoscelidan limb is comparable to that of an unhatched chick.

Taking all these facts together, it is obvious that the view, which was entertained by Mantell and the probability of which was demonstrated by your own distinguished anatomist, Leidy, while much additional evidence in the same direction has been furnished by Professor Cope, that some of these animals may have walked upon their hind legs, as birds do, acquires great weight. In fact, there can be no reasonable doubt that one of the smaller forms of the _Ornithoscelida_, _Compsognathus_, the almost entire skeleton of which has been discovered in the Solenhofen slates, was a bipedal animal. The parts of this skeleton are somewhat twisted out of their natural relations, but the accompanying figure gives a just view of the general form of _Compsognathus_ and of the proportions of its limbs; which, in some respects, are more completely bird-like than those of other _Ornithoscelida_.

[Illustration: FIG. 7.--RESTORATION OF COMPSOGNATHUS LONGIPES.]

We have had to stretch the definition of the class of birds so as to include birds with teeth and birds with paw-like fore-limbs and long tails. There is no evidence that _Compsognathus_ possessed feathers; but, if it did, it would be hard indeed to say whether it should be called a reptilian bird or an avian reptile.

As _Compsognathus_ walked upon its hind legs, it must have made tracks like those of birds. And as the structure of the limbs of several of the gigantic _Ornithoscelida_, such as _Iguandon_, leads to the conclusion that they also may have constantly, or occasionally, assumed the same attitude, a peculiar interest attaches to the fact that, in the Wealden strata of England, there are to be found gigantic footsteps, arranged in order like those of the _Brontozoum_, and which there can be no reasonable doubt were made by some of the _Ornithoscelida_, the remains of which are found in the same rocks. And, knowing that reptiles that walked upon their hind legs and shared many of the anatomical characters of birds did once exist, it becomes a very important question whether the tracks in the Trias of Massachusetts, to which I referred some time ago, and which formerly used to be unhesitatingly ascribed to birds, may not all have been made by Ornithoscelidan reptiles; and whether, if we could obtain the skeletons of the animals which made these tracks, we should not find in them the actual steps of the evolutional process by which reptiles gave rise to birds.

The evidential value of the facts I have brought forward in this Lecture must be neither over nor under estimated. It is not historical proof of the occurrence of the evolution of birds from reptiles, for we have no safe ground for assuming that true birds had not made their appearance at the commencement of the Mesozoic epoch. It is, in fact, quite possible that all these more or less avi-form reptiles of the Mesozoic epoch are not terms in the series of progression from birds to reptiles at all but simply the more or less modified descendants of Palaeozoic forms through which that transition was actually effected.

We are not in a position to say that the known _Ornithoscelida_ are intermediate in the order of their appearance on the earth between reptiles and birds. All that can be said is that, if independent evidence of the actual occurrence of evolution is producible, then these intercalary forms remove every difficulty in the way of understanding what the actual steps of the process, in the case of birds, may have been.

That intercalary forms should have existed in ancient times is a necessary consequence of the truth of the hypothesis of evolution; and, hence, the evidence I have laid before you in proof of the existence of such forms, is, so far as it goes, in favour of that hypothesis.

There is another series of extinct reptiles, which may be said to be intercalary between reptiles and birds, in so far as they combine some of the characters of both these groups; and, which, as they possessed the power of flight, may seem, at first sight, to be nearer representatives of the forms by which the transition from the reptile to the bird was effected, than the _Ornithoscelida_.

[Illustration: FIG. 8.--PTERODACTYLUS SPECTABILIS (Von Meyer).]

These are the _Pterosauria_, or Pterodactyles, the remains of which are met with throughout the series of Mesozoic rocks, from the lias to the chalk, and some of which attained a great size, their wings having a span of eighteen or twenty feet. These animals, in the form and proportions of the head and neck relatively to the body, and in the fact that the ends of the jaws were often, if not always, more or less extensively ensheathed in horny beaks, remind us of birds. Moreover, their bones contained air cavities, rendering them specifically lighter, as is the case in most birds. The breast-bone was large and keeled, as in most birds and in bats, and the shoulder girdle is strikingly similar to that of ordinary birds. But, it seems to me, that the special resemblance of pterodactyles to birds ends here, unless I may add the entire absence of teeth which characterizes the great pterodactyles (_Pteranodon_), discovered by Professor Marsh. All other known pterodactyles have teeth lodged in sockets. In the vertebral column and the hind limbs there are no special resemblances to birds, and when we turn to the wings they are found to be constructed on a totally different principle from those of birds.

There are four fingers. These four fingers are large, and three of them, those which answer to the thumb and two following fingers in my hand--are terminated by claws, while the fourth is enormously prolonged and converted into a great jointed style. You see at once, from what I have stated about a bird's wing, that there could be nothing less like a bird's wing than this is. It concluded by general reasoning that this finger had the office of supporting a web which extended between it and the body. An existing specimen proves that such was really the case, and that the pterodactyles were devoid of feathers, but that the fingers supported a vast web like that of a bat's wing; in fact, there can be no doubt that this ancient reptile flew after the fashion of a bat.

Thus though the pterodactyle is a reptile which has become modified in such a manner as to enable it to fly, and therefore, as might be expected, presents some points of resemblance to other animals which fly; it has, so to speak, gone off the line which leads directly from reptiles to birds, and has become disqualified for the changes which lead to the characteristic organization of the latter class. Therefore, viewed in relation to the classes of reptiles and birds, the pterodactyles appear to me to be, in a limited sense, intercalary forms; but they are not even approximately linear, in the sense of exemplifying those modifications of structure through which the passage from the reptile to the bird took place.

LECTURE III.

THE DEMONSTRATIVE EVIDENCE OF EVOLUTION.

The occurrence of historical facts is said to be demonstrated, when the evidence that they happened is of such a character as to render the assumption that they did not happen in the highest degree improbable; and the question I now have to deal with is, whether evidence in favour of the evolution of animals of this degree of cogency is, or is not, obtainable from the record of the succession of living forms which is presented to us by fossil remains.

Those who have attended to the progress of palaeontology are aware that evidence of the character which I have defined has been produced in considerable and continually-increasing quantity during the last few years. Indeed, the amount and the satisfactory nature of that evidence are somewhat surprising, when we consider the conditions under which alone we can hope to obtain it.

It is obviously useless to seek for such evidence except in localities in which the physical conditions have been such as to permit of the deposit of an unbroken, or but rarely interrupted, series of strata through a long period of time; in which the group of animals to be investigated has existed in such abundance as to furnish the requisite supply of remains; and in which, finally, the materials composing the strata are such as to ensure the preservation of these remains in a tolerably perfect and undisturbed state.

It so happens that the case which, at present, most nearly fulfils all these conditions is that of the series of extinct animals which culminates in the Horses; by which term I mean to denote not merely the domestic animals with which we are all so well acquainted, but their allies, the ass, zebra, quagga, and the like. In short, I use "horses"

as the equivalent of the technical name _Equidae_, which is applied to the whole group of existing equine animals.

The horse is in many ways a remarkable animal; not least so in the fact that it presents us with an example of one of the most perfect pieces of machinery in the living world. In truth, among the works of human ingenuity it cannot be said that there is any locomotive so perfectly adapted to its purposes, doing so much work with so small a quantity of fuel, as this machine of nature's manufacture--the horse. And, as a necessary consequence of any sort of perfection, of mechanical perfection as of others, you find that the horse is a beautiful creature, one of the most beautiful of all land-animals. Look at the perfect balance of its form, and the rhythm and force of its action. The locomotive machinery is, as you are aware, resident in its slender fore and hind limbs; they are flexible and elastic levers, capable of being moved by very powerful muscles; and, in order to supply the engines which work these levers with the force which they expend, the horse is provided with a very perfect apparatus for grinding its food and extracting therefrom the requisite fuel.

Without attempting to take you very far into the region of osteological detail, I must nevertheless trouble you with some statements respecting the anatomical structure of the horse; and, more especially, will it be needful to obtain a general conception of the structure of its fore and hind limbs, and of its teeth. But I shall only touch upon those points which are absolutely essential to our inquiry.

Let us turn in the first place to the fore-limb. In most quadrupeds, as in ourselves, the fore-arm contains distinct bones called the radius and the ulna. The corresponding region in the Horse seem at first to possess but one bone. Careful observation, however, enables us to distinguish in this bone a part which clearly answers to the upper end of the ulna.

This is closely united with the chief mass of the bone which represents the radius, and runs out into a slender shaft which may be traced for some distance downwards upon the back of the radius, and then in most cases thins out and vanishes. It takes still more trouble to make sure of what is nevertheless the fact, that a small part of the lower end of the bone of the horse's fore-arm, which is only distinct in a very young foal, is really the lower extremity of the ulna.

What is commonly called the knee of a horse is its wrist. The "cannon bone" answers to the middle bone of the five metacarpal bones, which support the palm of the hand in ourselves. The "pastern," "coronary,"

and "coffin" bones of veterinarians answer to the joints of our middle fingers, while the hoof is simply a greatly enlarged and thickened nail.

But if what lies below the horse's "knee" thus corresponds to the middle finger in ourselves, what has become of the four other fingers or digits? We find in the places of the second and fourth digits only two slender splint-like bones, about two-thirds as long as the cannon bone, which gradually taper to their lower ends and bear no finger joints, or, as they are termed, phalanges. Sometimes, small bony or gristly nodules are to be found at the bases of these two metacarpal splints, and it is probable that these represent rudiments of the first and fifth toes.

Thus, the part of the horse's skeleton, which corresponds with that of the human hand, contains one overgrown middle digit, and at least two imperfect lateral digits; and these answer, respectively, to the third, the second, and the fourth fingers in man.

Corresponding modifications are found in the hind limb. In ourselves, and in most quadrupeds, the leg contains two distinct bones, a large bone, the tibia, and a smaller and more slender bone, the fibula. But, in the horse, the fibula seems, at first, to be reduced to its upper end; a short slender bone united with the tibia, and ending in a point below, occupying its place. Examination of the lower end of a young foal's shin-bone, however, shows a distinct portion of osseous matter, which is the lower end of the fibula; so that the, apparently single, lower end of the shin-bone is really made up of the coalesced ends of the tibia and fibula, just as the, apparently single, lower end of the fore-arm bone is composed of the coalesced radius and ulna.

The heel of the horse is the part commonly known as the hock. The hinder cannon bone answers to the middle metatarsal bone of the human foot, the pastern, coronary, and coffin bones, to the middle toe bones; the hind hoof to the nail; as in the fore-foot. And, as in the fore-foot, there are merely two splints to represent the second and the fourth toes.

Sometimes a rudiment of a fifth toe appears to be traceable.

The teeth of a horse are not less peculiar than its limbs. The living engine, like all others, must be well stoked if it is to do its work; and the horse, if it is to make good its wear and tear, and to exert the enormous amount of force required for its propulsion, must be well and rapidly fed. To this end, good cutting instruments and powerful and lasting crushers are needful. Accordingly, the twelve cutting teeth of a horse are close-set and concentrated in the fore part of its mouth, like so many adzes or chisels. The grinders or molars are large, and have an extremely complicated structure, being composed of a number of different substances of unequal hardness. The consequence of this is that they wear away at different rates; and, hence, the surface of each grinder is always as uneven as that of a good millstone.

I have said that the structure of the grinding teeth is very complicated, the harder and the softer parts being, as it were, interlaced with one another. The result of this is that, as the tooth wears, the crown presents a peculiar pattern, the nature of which is not very easily deciphered at first; but which it is important we should understand clearly. Each grinding tooth of the upper jaw has an _outer wall_ so shaped that, on the worn crown, it exhibits the form of two crescents, one in front and one behind, with their concave sides turned outwards. From the inner side of the front crescent, a crescentic _front ridge_ passes inwards and backwards, and its inner face enlarges into a strong longitudinal fold or _pillar_. From the front part of the hinder crescent, a _back ridge_ takes a like direction, and also has its _pillar_.

The deep interspaces or _valleys_ between these ridges and the outer wall are filled by bony substance, which is called _cement_, and coats the whole tooth.

The pattern of the worn face of each grinding tooth of the lower jaw is quite different. It appears to be formed of two crescent-shaped ridges, the convexities of which are turned outwards. The free extremity of each crescent has a _pillar_, and there is a large double _pillar_ where the two crescents meet. The whole structure is, as it were, imbedded in cement, which fills up the valleys, as in the upper grinders.

If the grinding faces of an upper and of a lower molar of the same side are applied together, it will be seen that the apposed ridges are nowhere parallel, but that they frequently cross; and that thus, in the act of mastication, a hard surface in the one is constantly applied to a soft surface in the other, and _vice versa_. They thus constitute a grinding apparatus of great efficiency, and one which is repaired as fast as it wears, owing to the long-continued growth of the teeth.

Some other peculiarities of the dentition of the horse must be noticed, as they bear upon what I shall have to say by and by. Thus the crowns of the cutting teeth have a peculiar deep pit, which gives rise to the well-known "mark" of the horse. There is a large space between the outer incisors and the front grinder. In this space the adult male horse presents, near the incisors on each side, above and below, a canine or "tush," which is commonly absent in mares. In a young horse, moreover, there is not unfrequently to be seen in front of the first grinder, a very small tooth, which soon falls out. If this small tooth be counted as one, it will be found that there are seven teeth behind the canine on each side; namely, the small tooth in question, and the six great grinders, among which, by an unusual peculiarity, the foremost tooth is rather larger than those which follow it.

I have now enumerated those characteristic structures of the horse which are of most importance for the purpose we have in view.

To any one who is acquainted with the morphology of vertebrated animals, they show that the horse deviates widely from the general structure of mammals; and that the horse type is, in many respects, an extreme modification of the general mammalian plan. The least modified mammals, in fact, have the radius and ulna, the tibia and fibula, distinct and separate. They have five distinct and complete digits on each foot, and no one of these digits is very much larger than the rest. Moreover, in the least modified mammals, the total number of the teeth is very generally forty-four, while in horses, the usual number is forty, and in the absence of the canines, it may be reduced to thirty-six; the incisor teeth are devoid of the fold seen in those of the horse: the grinders regularly diminish in size from the middle of the series to its front end; while their crowns are short, early attain their full length, and exhibit simple ridges or tubercles, in place of the complex foldings of the horse's grinders.

Hence the general principles of the hypothesis of evolution lead to the conclusion that the horse must have been derived from some quadruped which possessed five complete digits on each foot; which had the bones of the fore-arm and of the leg complete and separate; and which possessed forty-four teeth, among which the crowns of the incisors and grinders had a simple structure; while the latter gradually increased in size from before backwards, at any rate in the anterior part of the series, and had short crowns.

And if the horse has been thus evolved, and the remains of the different stages of its evolution have been preserved, they ought to present us with a series of forms in which the number of the digits becomes reduced; the bones of the fore-arm and leg gradually take on the equine condition; and the form and arrangement of the teeth successively approximate to those which obtain in existing horses.

Let us turn to the facts, and see how far they fulfil these requirements of the doctrine of evolution.

Report error

If you found broken links, wrong episode or any other problems in a anime/cartoon, please tell us. We will try to solve them the first time.

Email:

SubmitCancel

Share