Prev Next

William Norris did his full part in giving Europe a measure of respect for the growing nation across the Atlantic.

Matthias Baldwin, like Phineas Davis, of York, was a watch maker in the beginning of his life. He lived long enough to lay the foundation of one of the greatest of American single industries, to give his name to a firm that has carried the fame of American locomotives around the world and kept it alive in every nation of the earth. Baldwin's first locomotive was built in 1832 for the Philadelphia, Germantown, and Norristown Railroad; and that it was a good locomotive is proved by the fact that it performed twenty years of faithful service upon that line. His second engine, built two years later, went south to that famous old Charleston & Hamburg Company. After that his works were regularly established, their head to give his patience and untiring genius to the perfecting of the locomotive.

The history of Baldwin locomotives is, in an important sense, the history of the industry in the United States.

It was not long before the pioneer engines were considered too small for much practical value, and Mr. Baldwin was building a much bigger locomotive for the Vermont Central Railroad. This engine, named the _Governor Paine_ for a famous executive of that State, was delivered in 1848, and for it was paid the unprecedented price of $10,000. It had a pair of driving-wheels, six and one-half feet in diameter placed just back of the fire-box, a slightly smaller pair being placed forward. Baldwin must have given full value, for it is related that the engine could be started from a state of rest and run a mile in forty-three seconds. The Pennsylvania Railroad ordered three of the same sort, and one of these once hauled a special train carrying President Zachary Taylor at sixty miles an hour. In weight, the locomotive was steadily increasing. In the beginning, these engines weighed from four to seven tons each; by the late forties engines of twenty-five tons each were being built for the Reading Road, and these were regarded as monsters.

Year by year the locomotive was being perfected in all its details. The cab made its appearance and was first opposed by the engineers, who imagined that they would be badly penned in, in case of accident. The Erie contributed the bell-rope signal from the train; we have already heard of that first whistle on the locomotive of the Sandusky and Mad River Railroad. The Boston & Worcester devised the headlight, so that time might be saved by handling freight at night. More important than these were the experiments by Ross Winans and by S. M. Felton that led to the substitution of coal for wood as a fuel, and the development by Rogers at his Paterson works of the link device, so necessary in stopping, starting, and reversing the locomotive.

Gradually the size of the locomotive increased to 28 and 30 tons in the late fifties. Finally James Milholland, engineer of machinery for the Philadelphia & Reading Railroad, built in 1863 a pusher engine for coal trains that weighed something over 50 tons. When folk saw that engine they almost gasped, and wondered what the railroads were coming to. But the wiser men kept silent. They knew that as long as bridges and roadbeds and fine steel rails were increased in strength, the limit of size of the locomotive had not been reached. The greater grip the locomotive has upon the rail, the greater its pulling power, the greater its efficiency. Sheer weight, and weight alone, gives that grip. It certainly takes a weight of seven tons to give a grip of one ton upon a dry rail; in the case of wet rails this ratio becomes ten to one.

Then wonder not that the locomotive steadily increased in size, that the Moguls with six driving-wheels, and the Consolidations with eight, came into vogue a few years after the close of the war, and that these kept increasing in weight all the while. Height and width were and still are rigidly limited by the clearance of the line. The locomotive must stand no more than fourteen or sixteen feet high and from nine to eleven feet wide; in length the problem only meets the genius of the designer.

But it is altogether possible that the limit of the size of the locomotive would have been reached long ago if it had not been for the coming of the air-brake. This most important assurance of the safety of the railroad passenger came into its being in 1869, when George Westinghouse, its inventor, was permitted to try it on a Panhandle train.

From the beginning of railroads the necessity for brakes was apparent, and in 1833 Robert Stephenson patented a steam brake for the driving-wheels.

That same brake, with compressed air substituted for steam, is essentially the Westinghouse device of to-day. But Westinghouse made the air do the work of steam. After he had developed the idea he offered it to leading Eastern railroads, but they one and all declined it.

Finally, he was permitted to place it on a Panhandle train, full assurance having been given to the railroad officials that he would be personally responsible for any injury done to their equipment. Four cars and an engine were fitted with the new device and the train started forth from Pittsburgh to Steubenville. On the way its progress was halted by a farm wagon which was caught in the rail at a highway crossing. The engineer whistled for the handbrakes in the good old-fashioned way but he knew that he was too late. Then he thought of the air-brake. He had little faith in the contraption, but he gave its handle a wrench and the train stopped ten feet from the wagon. Several lives were saved and the air-brake was proven. From that day forth it was simply a question of developing the device to its fullest possibility, and Mr. Westinghouse has proved himself able to do that very thing.

The air-brake was a fact. Steel had come into use for axles, driving-wheel tires, frames, and every other vital or bearing part of the locomotive; and the designers were again increasing its size. They passed the _Consolidation_ and built the _Mastodon_. These were freighters--each with ten drivers--drivers with tremendous gripping force. They went through what M. N. Forney has called a "period of adolescence in railroad progress," and in that period they experimented with huge driving-wheels only to discard them once again. Then they built bigger engines than even the _Mastodon_; the _Decapod_, with twelve driving-wheels; the _El Gobernador_ which was built by the Southern Pacific at its Sacramento shops in 1884, weighing, with engine and tender fully equipped, 113 tons.

Still the locomotive grows and its progenitors talk of the 500-ton machine. They have recently built the Mallet articulated compound, which because of its very great weight has splendid gripping force and is especially adapted for pushing-service on heavy grades. The Baltimore & Ohio, the Erie, the New York Central, the Great Northern, and the Santa Fe have already become committed to this type of engine. The American locomotive Company has just completed for the Delaware & Hudson several Mallet articulated compounds that are among the most powerful locomotives yet constructed. They were designed for pusher service, on heavy grades, north from Carbondale on the main line of the D. & H., which average from .81 to 1.36 per cent. Up to recently the heavy northbound coal traffic up these grades has been handled by the use of two heavy pusher engines. A single one of the new Mallets will do the work of the two pushers, and therein lies the economy in their use.

These new giants are, in operation, two 8-wheel engines, with individual cylinders, steam chests and supplies from a single boiler and fire-box.

The gripping power of 16 driving-wheels under the enormous weight of 223 tons can be imagined; the designers estimate it at the high figure of forty-three tons. The exceptional length of these monster engines--a fraction over ninety feet--is carried around the curves of mountainous lines by an ingenious joint in their solid steel frames. This then is only the latest of American engines; but not quite the biggest, for the Topeka shops of the Santa Fe Railroad claim that honor with their new Mallets, each 121 feet long and weighing complete 810,000 pounds. The 500-ton locomotive does not seem so very far away when one comes to consider the Santa Fe giants. These engines, which are operated in pushing freights over the heavy grades in the Southwest, were built from two of the Santa Fe's heaviest freight engines. They operate with equal facility in either direction as there is not a turntable in the land which would come anywhere near accommodating them.

[Illustration: ONE OF THE "DIAMOND-STACK" LOCOMOTIVES USED ON THE PENNSYLVANIA RAILROAD IN THE EARLY SEVENTIES

PRAIRIE TYPE PASSENGER LOCOMOTIVE OF THE LAKE SHORE

PACIFIC TYPE PASSENGER LOCOMOTIVE OF THE NEW YORK CENTRAL

ATLANTIC TYPE PASSENGER LOCOMOTIVE, BUILT BY THE PENNSYLVANIA RAILROAD AT ITS ALTOONA SHOPS]

[Illustration: ONE OF THE GREAT MALLET PUSHING ENGINES OF THE DELAWARE & HUDSON COMPANY

A TEN-WHEELED SWITCHING LOCOMOTIVE OF THE LAKE SHORE

SUBURBAN PASSENGER LOCOMOTIVE OF THE NEW YORK CENTRAL

CONSOLIDATION FREIGHT LOCOMOTIVE OF THE PENNSYLVANIA]

In recent years, the rather graceful custom of giving names to the classification of locomotives has been extended to the passenger motive-power. In 1895, the Baldwins created the Atlantic type of four-driver locomotive for high-speed service both on the Atlantic Coast Line and on the Atlantic City Railroad, from Camden to the ocean--and the name has stuck. The Brooks plant of the American Locomotive Company at Dunkirk similarly developed the Pacific type for passenger locomotives with six drivers instead of four. The Prairie type was appropriately enough sponsored by the Burlington system. It is like the Pacific type save that the forward or lead truck (the Englishman would blandly call it the "bogey") has but two instead of the conventional four wheels.

Your locomotive-builder is apt to be more systematic about these types of engine, and he falls back on what is generally known as Whyte's classification. The basis of this simple system is in the number of wheels of the engine itself. Each type is described by a series of three numbers, the first of these being the number of wheels in front of the drivers, the second the number of drivers, and the third the number of wheels to the rear of these. The eight-wheel American type, the simplest for illustration here, would thus be described as "4-4-0."

The trailer, which is described by the third number in this series, is a recent addition to the locomotive family in this country. It came from the constant lengthening of the fire-box, due to the necessity of providing greater steam-power for engines of increasing weight and cylinder capacity. When the fire-box began to overhang too far, the trailer-wheels were introduced, and a device was affixed to the locomotive by which they might receive its weight for hill-climbing purposes. This last device has not proved particularly successful. But the trailer itself has become a fixed device in locomotive construction. When the third figure in Whyte's classification is a cypher it simply means that there are no trailers. Similarly the first figure a cypher, indicates the absence of a forward truck or even wheels, which is common in some forms of switch-engines, where the weight is entirely concentrated on the drivers for better gripping power upon the rail.

Such, in brief, is the development of the locomotive. It has been development rather than change, for while some designers have fretted about whether the engine's cab should be in the middle of the boiler or at its end and others have recently developed the Walsheart gears upon the outside of the engine frame, where it is of easier access than the old-style links, the general design of the iron-horse remains practically the same as that given it by our grand-daddies. They planned carefully and they planned for the long years. The essential features of their designs have not been questioned. It has simply been a problem of growth.

From out of the fiery womb of steel comes the locomotive. If you would better understand the iron horse, find your way to any of the great plants in which he is being built. Begin at the beginning in a factory, which seems, with dozens of shops and great yards, to be almost a miniature city. Begin at the draughting-rooms where each locomotive is given a whole ledger page--sometimes two or three--for specifications. From those specifications, the young draughtsmen take their instructions. They work out their charts and elevations, their detailed plans; and the ink is hardly dry upon their drawings before they are being whisked away to the blueprint rooms. The blueprints are still damp, when in turn they are hurried to the different construction shops of the plant.

You see these shops, one by one, in care of an expert guide. You see the wooden patterns going to the blast furnaces at the foundries and to the sullen tappings of the trip-hammers. You leave the blacksmiths and stand for a moment--not long--under the terrific din of the boiler-makers. The boiler, the great trunk of the locomotive, is built of steel plate--plate that is the very pride of the rolling-mills. In some foreign lands, copper fire-boxes are demanded; but the real American locomotive has these also of steel.

The steel plates are rolled to form the boiler itself, flanged by angle-workers into the square fire-box. Finally the boiler and the fire-box are riveted together, section by section--made as fast by steel thread as man's ingenuity can make them. Together they form a unit.

Another unit is being formed in an adjacent shop, the solidly welded steel frame in which the boiler shall yet set, and to which truck and drivers will be firmly fastened. Forward on this frame will sit the cylinders; in another corner of this shop they are being made ready. Cast-iron still remains the best material for the cylinders and the steam-chests. These are cast in one piece and the rule holds good where there are two cylinders, as in the case of the compounds. The cylinders, and steam-chest for one side and half the "saddle" of the locomotive, upon which the forward end of the boiler rests, are nowadays generally made in a single casting. After that it is a simple enough matter to smooth down the outer surface, bore the cylinders to perfect surfacing, and line the steam-chests with a bushing that can be readily removed once it is worn out.

The driving-wheels are an important detail of the construction of the locomotive. They are made in rough castings--of steel for fast passenger engines, and of iron for other forms of motive power--and are then made true in giant lathes. The steel tires are shrunk on the wheels, a work of astounding nicety; and in turn the wheels themselves are heated and shrunk upon the axles--of the best steel that man can forge. To place these wheels upon the axles is hair-line work. A 9-inch hub receives an axle just 8.973 inches--no more, no less--in diameter. It is keyed and then under the slight expansion of a gentle heat it is rammed upon the axle-end. It goes on to stay, and stay it must.

From all these shops, a busy industrial railroad brings the different parts to the great and busy hall of the erecting-shop, a vast place of vast distances and filled always with the noisy clatter of great industry.

Here the different parts, which have been carefully built by skilled artisans, are assembled into the finished whole. The cylinders and saddle-halves are placed and firmly riveted together. Into the collar of that saddle a giant overhead crane carefully sets the boiler and the fire-box. They are quickly riveted to the upper flange of the saddle: the locomotive is coming into a semblance of itself.

The cab is fastened into position; then the boiler-makers descend upon the unfinished engine and place the 200 or more flue-tubes that run from fire-box to smoke-box, just underneath the stack. They make every tube and joint fast--put into the growing locomotive all the energy and all the skill of good workmanship. When they are gone the giant crane again comes noiselessly down along the ceiling. It reaches down, grasps the engine-trunk, and swings it high aloft.

Down there, resting on real railroad tracks, are the driving-wheels and the lead truck, carefully spaced in anticipation. The crane, lifting the fifty tons of boiler and frame with no apparent effort whatsoever, places its load squarely upon the wheels that are to carry it. Again the mechanics are busy; the engine is growing into a solid unit. Upon their heels follow testers, men who must look for steam or water leaks. They work under a test of air, carrying lighted candles into every nook and cranny of the giant. If the candle flutters, air is escaping, and the leak must be found.

Finally comes the report "O. K." from the testing crew. The stacks, the steam and sand domes, and the air-brakes are being made fast. The engine is hurried off to the paint-shop. There it may find its companion in life, the humble useful tender already awaiting it. It came direct from the tender shop; for the appendage of the locomotive is no longer a specially rigged flat-car but a solid steel plate construction built to carry some 9,000 gallons of water and about 16 tons of coal. Only a little time ago, a New Yorker, scion of a wealthy and famous family of railroaders, proved himself worth his oats by designing a tender of great practicability and of great economy of construction.

When the engine emerges from the paint-shop it is gorgeous and refulgent--brilliantly new. Unless it is going to foreign lands, when it must be partly dismantled and crated, it will ride its own wheels to the road which has purchased it. A string of new locomotives may be sprinkled through a freight train--never coupled together--in charge of an inspector from the locomotive company, who will bunk in one of the cabs and never leave his charges until they have been receipted for. After that the locomotive begins to bend to the work for which he was created. Unless he is of a very unusual sort or was built for some very especial purpose, he soon loses his identity. The days are gone when locomotives were christened after the fashion of ships. There are too many of them. Each is given the cold informality of a number, marshalled for service in a mighty company.

Cars came as corollary to the locomotive. In the beginning the passenger coaches were nothing more or less than old-time stage-coaches which had been set upon wheels so flanged as to enable them to stay upon the rail.

So it was that the first cars built for the railroad followed stage-coach models. It was a practical necessity from the first to draw more than one small coach at a time, so the couplings and the bumper devices came as a matter of development. Then came the day when an aspiring inventor grouped several stage-coaches together on a single rigid frame and he had really developed a form of railroad coach--a form which our English and continental cousins still cling fondly to, in despite of its most apparent disadvantages.

Four wheels quickly gave way to eight. In the early thirties, Ross Winans developed a double-truck car for use on the Baltimore & Ohio. Compared with anything that had gone before it was certainly a pretentious vehicle.

It was thirty feet in length, four-wheel trucks being attached at the ends, very much after the present fashion. There were seats on the flat roof, which were reached by a ladder in the corner, and the car itself was divided into three compartments. A little later Winans tore out the cross partitions in the car and introduced the end doors and the centre aisle, thus establishing the American passenger coach of to-day. The Baltimore & Ohio manufactured a number of these coaches at its famous Mount Clare shops. They were known for years as the "Washington cars," probably because they were the first run on the Washington branch.

If Winans had been able to establish his patent rights to the double-truck car he might have reaped a fortune from its royalties alone. But when he went to assert his right as an inventor, it was discovered that the idea was not absolutely new. Gridley Bryant, in his old Quincy Granite Railroad, just south of Boston, had used the device in crude form. The four-wheeled flat cars which he had employed in bringing stone from the quarries down to the dock were not long enough for granite slabs. He had met that emergency by fastening two of them together with coupling-rings, and thus in a way had created the eight-wheel car. So Winans lost his patent although credit is given him for having really developed the passenger car of to-day.

The form, once set, came quickly into vogue. In a few of the Southern States, old-fashioned gentlemen followed the early English fashion of having their private carriages attached to flat freight-cars whenever they went on railroad trips, but even this was a passing fad. At that time carriages were no novelty, and railroad cars were. They were stuffy little affairs compared with the coaches of to-day, miserably lighted and heated and ventilated, but Americans were very proud of them. The fashion that made early locomotives gay with color, with brass and burnished metals of other sorts, found full scope upon the passenger cars, both inside and out. They were pannelled and striped, ornamented and lettered to the limit of the skill of gifted painters. A coach, named the Morris Run, on the old Tioga Railroad, which began running south from Elmira about 1840, was decorated in red and green and yellow and blue and gilt and several other colors. It would have made a modern circus band wagon inconspicuous. But the day came when the brass stars and the red stack-bands began to disappear with the names from the locomotives and in that day the railroad cars became subdued in colorings. Some of the gay frescoes of the interiors, typical of the taste of an earlier day, were in use within the present generation.

While the "Washington cars" set a type, there was much yet to be accomplished in the development both of the passenger coach and of the freight car, and this much was chiefly in the line of the development of safety devices. The old-time passenger rode in a very decent fear of his life. Sometimes a loosened end of one of the "strap rails" would come plunging up through the flimsy floor of the coach and impale some unfortunate passenger upon its end against the ceiling; other times the cars would go rolling off the banks and crashing into kindling-wood against one another. They were lightly built contrivances, incapable of standing any sort of shock or collision.

But improvements came one by one--better devices for coupling them together, culminating in the modern automatic "jaw coupler," better framing, better platforms, better trucks, improved hand-brakes; and after them the now universal air-brakes made life safer both for the traveller and the railroad employee. Finally came the steel-end vestibule; and where cars have been equipped with this very comfortable device, telescoping in collision, a very common and disastrous accident in which one car-shell enveloped another, has been rendered impossible.

The car-platforms for many years remained a menace and a problem. An early railroad in New Jersey sought to emphasize their danger by painting on an inner panel of each car-door a picture of a newly made grave, surmounted by a tombstone, on which was inscribed: "Sacred to the memory of a man who stood upon a platform." The railroad used every method to keep its passengers off the platforms at first. Afterwards they began to encourage it and to devise means to promote a general intercourse between the cars.

The dining-car, of which much more in another chapter, was a prime factor in this change of attitude on the part of railroad officers. Its use necessitated passengers going the length of the train, a movement which, in itself, was facilitated by the main design of American cars, as differentiated from those of English railroads. When the English roads began the universal use of dining-cars they had to revamp the entire plan of their car construction and produce what are still known across the Atlantic as "corridor trains."

To make such communication safe, George M. Pullman, the sleeping-car man, set forth to devise a platform protection. Back in the fifties there had been something of the sort on the old Naugatuck Railroad in Connecticut, rough canvas curtains enclosing the platforms; but these had been built to facilitate car ventilation, and failing in this, they were abandoned after three or four years of trial. Pullman did better. He devised a platform enclosure of folding doors and placed a steel frame at the end of his vestibule that did more than merely protect passengers from the stress of weather; these, of course, then served as effective anti-telescoping devices. The Pennsylvania Railroad began the use of these vestibules in 1886 and they were soon universally adopted by American railroads on their fast through trains.

After that a better vestibule was devised by Col. W. D. Mann, one that extended the full width of the car. In fact the platform of the car had practically ceased to exist, the structure being full-framed to include its entrances at both ends.

After the vestibule came the steel car, introduced within the past ten years for freight service, and within the past five or six for passenger equipment. It has everything to commend it, save a slightly increased original cost, which is more than compensated by economy of maintenance, to say nothing of the intangible but certain raised factor of safety. It is to become universal; the wooden car will become extinct upon American railroads almost as soon as the present equipment is worn out and sent to the scrap-heap.

Of the forms and varieties of railroad passenger coaches there are many, and these will be described when we come to consider in a later chapter the luxury of modern railroad travel. But the variety of passenger equipment quite pales before that of the freight service. Flat-cars, coal-cars, box-cars, grain-cars, live-stock cars--the list runs on into catalogue form. There are refrigerator cars that are kept filled with salt and ice or ice alone, precooled cars that are merely kept air-tight, and ventilator cars employing a distinct reverse of that method; and up in northern climates there are heater-cars which are kept warm by lamps or by stoves and which are used for the transportation of fresh fruit and vegetables in winter just as the refrigerator-cars and the precooled cars are used for that same purpose in summer.

Almost all the safety devices that have been added to the running-gear of the passenger equipment have been added to the freight equipment also, to the great safety and peace of mind of the railroad employee. The car itself remains the simple essential of the very beginnings of the railroad. Its change has been a change in size, in weight, and in strength.

Report error

If you found broken links, wrong episode or any other problems in a anime/cartoon, please tell us. We will try to solve them the first time.

Email:

SubmitCancel

Share